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Summary

Ratio and product estimators are generally biased estimators. In the present
paper, theauthor hasdefined a general classof ratioestimators alternative to product
estimators and tried to reduce/eliminateits bias usingjackknife techniqueintroducedby
Quenouille [5]tomake theclass of estimators tobealmost unbaised. Theexpressions
forthebiasandmeansquared error(MSB) of theproposed classofestimators havebeen
deriyed to the first order of approximation under simple random sampling without
replacement (SRSWOR). strategy and the optimum estiinator in the class is also
identified. The results are illustrated by a simple numericalexample.

Key words : Bias, mean squared error, dual to product estimator, optimum
estimator.

Introduction

The ratio estimatorand its jackknife version have been considered by Rao,
andWebster [9],Rao[8],RaoandRao [10] andHutchison [3]among othersusing
a super populationmodel. However, ratio estimatoris knownto be inferior to the
productestimatorwhencorrelation coefficient betweentwopositivevariatesy and
Xis highly negative (see Murthy [4]. Some attention to theproduct estimators has
been given by Goodman [2], Srivastava [11], Wu and Chang [15] and Srivastava
et al. [12] among others. Theproduct estimator hasnot acqiiired the popularity as
the ratio estimator due to the misconcept about non occunence of negative
correlation inpractice andtheapparent superiorityof ratio estimator (underpositive
correlation) underdesignbasedc5mparisons. It is truethatthepositiveconelations
are often encountered in practicejbut negative conelatioris are not uncommon at
all. The negative correlations are often induced through inverse transformation of
regressorvariatex. It has been foundthat the correlationbetween(yieldand alkali)
and (yield and days to maturity) is negative.

Consider a finite population ( Xi, yi), i = 1,2,..., N with population means
Y), population variances ( S*, Sy) and covariance S^y. In forming a product
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estimator Yp of Y froma simplerandomsample ( Xj, yi), i = 1,2,..., n of size
n, we obtain

Yp = yx/X (1.1)

which is due to Robson [6] and rediscovered by Murthy [4] where x and y are the
sample means.

Consider the estimator

X* = (NX-nx)/(N-n) (1.2)

which is also an unbiased estimator for X. U«ng x* Srivenkataramana [13]
proposed a dual to product estiinator to estimate Y as

Y; = ^ X (1.3)
X

JL.,
Obviously, Y^ is a biased estimator for Y. To reduce/eliminate the bias of

Yr , we use Jackknife technique due to Quenouille [5] and obtain a general class
of estimators for Y and study the properties to the first order approximation.

2. Class ofEstimators

In this section, we define a class ofalmost unbiased dual to product estimators
using jackknife technique and also an approach adopted by Rao [7]. Here, we take
n = pm and split the sampleat randominto p subsamples of m units each. Let yj
and Xj (j = 1, 2,..., p ) be unbiased estimators of Y andX basedon subsamples
and y, x those based on entire sample of size n. Define the complementary
subsamplemeansyj and (j = 1,2,..., p ) as follows ;

y] = (ny-myj)/(n-m) = (ny-myj)/m'
(2.1)

Xj = (nx - mxj)/(n - m ) = (nx - mxj )/m'

which are subsample meansbasedon m' = (n - m) unitsobtainedby omittingjth
(j = 1, 2,..., p ) groupfromthe entire sampleof size n.

Consider

xi' = (NX-nx'i)/(N-n)
(2.2)

and X* = (NX - nx)/(N - n)
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Now,considerthe ratiotype estimators as

t; . I Xand t -Ji X (2.3)

based onentire sample ofsize nand subsample ofsize ( n- m) respectively. As
motivated by Rao [7], we_£ropose ageneral class ofalmost unbaised dual toproduct
estimator for estimating Y as

Tr =ay; +{1 - E(f(a))} Y* (2.4)

Where a isarandom variable independent ofYj and f (a)isafunction ofa. Then

• E(Tr)=Y

if E[aY; - E(f(a)) t ] =E(y- \ ). (2.5)

as

For (2.5),a= x'/Xand f(a) = a is a solution in the sample mean.

Introducing aconstant 'q' in the right hand side of(2.5), we can write (2.5)

E[aY;- E(f(a))Y;, ] = E[y-Y;.- qY;+ qt] (2.6)

Following Sukhatme et al. [14] thebiases of Y;and Y* to the terms of order
ofapproximation 0(n"' ) can be given as

(2.7)

R ^yM - vr2 n(N-.ntm)
^ N(N-n)(n-m)

K=

" +.K
N-n

(2.8)

' Where K= p — and Cy,Cx are the coefficients ofvariation for the variates

y and x and p is the correlation coefficient between the two variates.

From (2.7) and (2.8), it can be shown that
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B(^) ^ (N-n)(n-m) ^1
bT^T) ~ n(N-n+m) g(N-m')

B(Y;) = (1- 8)B(,Y;.)

(N-n) m'

m'
— = (1 - 8), (say)

where (1 - 6)
n (N-m')

and g
(N-m)

E(Y;)-Y= (1- 8) {e(Y^.)-Y

E(Y;) = 8Y+ (1- 6) e(y;.)

= 8E(.y)+ (1- 8) E(YJ.)

y; = 6y+ (1- 6) y;.

From (2.9) and (2.6), we have

E[at-E(f(a))t.]-E q+(l-6q)|

which shows that a solution is now given as

a = q+(l-6q)-^ and f(a) =a

(2.9)

Y;-(i +(1- 6)q}Y;.

(2.10)

(2.11)

for which E (f(a)) = l+ (l-6)q

Thus, using (2.11) in(2.4), a general class ofalmost unbiased dual toproduct
estimators can be obtained as

Tr = q+(l-6q)| Y;-(l-6)qY-

= qY; + (l-8q) y-(l-8)qY" (2.12)

Thus, the following theorem can be stated here
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Theorem 2.1 The class of estimators

Tr = a Yj +E 1 - E(f(a)) Yj would bealmost unbiased if

?a =q+(l-6q)^ and f(a) =a for which

E(f(a)) = 1+ (1- 6)q

When N is very largeor population is infinite,the classof almostunbiased
dual toproduct estimators in (2.12) reduces to

Tr = qY;+ (l-6'q)y-(l-6')qY;.

where 6* = - and (1 - 6*) =
P p

Remark The class of ^timators Tr in (2.12) reduces to the following set of
unbiased estimators forYforsuitable choices ofq.

(i) Forq =0, Tr^ = y, the usual sample mean.

(ii)Forq =i, Tr^=^- 1-8 t

or
„ _ (N-n +m)p (N-n)(p-l)

N . n

(See Sukhmatme etal. [14])

en N is very largeor popula

Tr^ = py;+ (i-p) Y-

(2.14)

(iii) When Nis very large or population is infinite, the estimate T^^ turns out to be

(2.15)

whichis Quenouille [5] typeestimator

1(iv) For q =
1-6

Tr3 =(l-26)(l-6)-' y+(l-6)-' t-Y' (2.15)

Several other estimators can be cited for other suitable choices ofqin(2.12).
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3. Optimum Estimator in the Class

From (2.12),we have

Tr = qY; + (l-6q)y-(l-6)qY;.

and V(Tr) = q '̂V(Y;) +(l-6q)^V(y) +(l-6fq^V(Y;.)

+2q (1- 6q) Cov {Y; ,y) - 2q (1- 8q) (1- 8) Cov (y ,t;.)

-2q^(l-8) Cov(Y;,-Y;.) (3.1)

Following Sukhatme et al. [14], to the terms of theorder ofapproximation
O(n"^), itcan be checked that

V(jO=^^C^

V(t) =V( y;.) =cov( y;, y;.)=[<^+ gc^(g+ 2K)]

(3-2)

Cov{y, t) =Cov( y, Y*) =̂ Y" [<^+ gKC^ ]

Puttingthe results (3.2) in (3.1) andsimplifying it, we get

V(Tr) = 6' q' V( Y;) +(1- 6q )' V(^ +26q (1- 6q) Cov( Yj, y)

= V[6qY; + (l-6q)y]

N-n:

nN
^Y^ [C^y +6qgC^,(6qg +2K)] (3.3)

which.is minimum for ^ ~̂ ~^opt (®®y)
From (3.3) and (3.4), the optimum (minimum) V(Tr) canbeobtained as

V,p.(Tr)=^ Y^Cjd- p^) (3-5)
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which is equivalent to the approximate variance of usual biased linear regression
estimator = y + b (X - x), where b is the sample regression coefficient of
y on X. From(3.4)and (2.12), an optimum estimatorin the class(2.12) is obtained
as . ,

Tro= (l+Kg-^)y-K(6g)-'Y- +(l-8)K(6g)-^Y;. (3.6)

with variancegiven at (3.5)

Remark

In (3.6), X is known but K = p —^ = p is rarelyknown where p is.the

population regression coefficient of y on x and p may be assessed with the
help of a scatter diagram of y or x for the data from a pilot survey or a study
based on past data or a part of the data from the cunent study. Thus, the value
of K may be assessed to be used to obtain the feasible estimators.

(ii) It is to be pointedout that the estimator in (2.12)wouldbe moreefficient
than the usual sample mean y and Tji2 according if

I

2K
either 0 < q <

2Kor - — < q < 0

(3.7)

andeither6-'<q<(2K-l)6-'
(3.8)

or (2k- 1) 6"' < q< 6-\

The variance/meansquared error of any estimatorbelonging to the class Tr
(2.12) can beeasily obtained from (3.3) tothe terms oforder 0(n"').

A. EmpiricalStudy

We now illustrate the results by empiiical example considering the data on
the number of peach trees is an orchard denoted by x and estimated production in
bushels of peach by y. Summarised data (see Cochran,W.G.[1],pp.172) is given
below.
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N = 256,X = 44.55, Y = 56.47, S| = 3898

Sj=6409, Sxy =4434, p=0.887

Let the sample size be n = 30, and split the sample into p = 5 subsamples
each of size m = 6.

Value of q

. 0

1

6

1

1- 6

qop, =-0.8113

q <-8.1133

q > 0

(-8.1133 <q<0)j

Table(4.1)%RELATIVE EFHCIENCY OFTr OVER jF

Estimator

y or Tri

Tr2

Tr3

Tro

Tr .

or

V(Tr)
, F-

N-n

nN

2.0098

68.9957

10.9677

0.4286

>2.0098

>2.0098

<2.0098

68.9957

% Relativeefficiency
overy

100.00

2.9129

18.3247

468.9221

<100

<100

>100

2.9129

In this table, the last column gives the percentage relative efficiency of the
estimators belonging to class Tr (2.12) over sample mean y for different choices
of q. The efficiency of the estimatorTro for the choiceof q =-0.8113 is maximum
among those considered here, which shows that Trq is the most efficient estimator
in the class Tr (2.12). In practice, one can substitute the estimated values of the
variances and covariances in order to obtain a "near optimum" value of q. In the
above table for the choice of q in an optimum interval (-8.1133 < q < 0 ), the
conesponding estimator in the class Tr (2.12) will be always more efficient than
those considered in this case. The table also shows that the estimators Tr2, YJ and

Yf.are equally efficient in this case.



DUAL TO PRODUCTESTIMATORS 135

REFERENCES

[1] Cochran, W.G., 1977. Sampling Technique. Wiley eastern Ltd.

[2] Goodman, LA., 1960. Onthe exact variance ofproduct. JA.SA.55,313-321.

[3] Hutchison, M.C., 1971. A Monte Carlo comparison of some ratio estimators. Biometrika, 58,
313-321.

[4] Murthy, M.N., 1964. Product method ofestimation. Sankhya, Sr.A,26,69-74.

[5] Quenouille, M.N., 1956.Noteon biasin estimation. Biometrika,,43,353-360.

[6] Robson, D.S., 1957. Application ofmultivariate polykays to the theory ofunbiased ratio type
estimator./M.SA 52,511-522.

[7] Rao,TJ., 1981.0naclassofalmostunbiasedratioestimator.Ann.//is(.5te/.MfllA,33,225-231.

[8] Rao, J.N.K., 1967. The precision ofMickeyesunbiasedratio estimator.5iometrifai, 54,321-324.

[9] Rao,J.N.K. andWebster,J.T. 1966.On two methods of bias reductionin the estimationof ratios.
Biometrika Si, Sn-521.

[10] Rao, P.S.R.S. and Rao, J.N.K. 1971. Small sample results forratio estimators. Biometrika, '58,
625-630.

[lij Srivastava,S.K., 1966. Product estimator./r./n<f.S/ar.Asjo. 4,29-37.
/ . '

[12] Srivastava, V.K., Sukla, N.D. and Bhatnagar, S., 1981. Unbiased product estimators. Metrika,
28,191-196. • . '

[13] Srivastava, T., 1980. Adual toratio estimator insample surveys. Biometrika, 67,1,199-204.

[14] Sukhatme, P.V. Sukhatme, B.V., Sukhatme, S.and Asok, C., 1984. Sampling theory ofsurveys
withapplications,IowaState Univ.Press,Ames, Iowa, U.S.A.

[15] Wu. C.F. and Chang, D.S., 1981. The asymptotic distribution ofthe product estimator. M.R.C.
Tech, Report, Univ. of Winconsin, Madison.


