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Summary .

Ratio and product estimators are generally biased estimators. In the present
paper, the author has defined a general class of ratio estimators alternative to product
estimators and tried to reduce/eliminate its bias using jackknife technique introduced by
Quenouille [5] to make the class of estimators to be almost unbaised. The expressions
for the bias and mean squared error (MSE) of the proposed class of estimators have been
derived to the first order of approximation under simple random sampling without
replacement (SRSWOR), strategy and the optimum estimator in the class is also .
identified. The results are illustrated by a simple numerical example.

Key words : Bias, mean squared error, dual to product estimator, optiraum
estimator.

Introduction

. The ratio estimator and its jackknife version have been considered by Rao,
and webster [9], Rao [8], Rao and Rao [10] and Hutchison [3] among others using
- a super population model. However, ratio estimator is known to be inferior 1o the
product estimator when correlation coefficient between two positive variates y and
x is highly negative (see Murthy [4]. Some attention to the product estimators has
been given by Goodman [2], Srivastava [11], Wu and Chang [15] and Srivastava
et al. [12] among others. The product estimator has not acquired the popularity as
the ratio estimator due to the misconcept about non occurrence of negative
correlationinpractice and the apparent supenonty of ratio estimator (under positive
correlation) under design based comparisons. It is'true that the positive correlations
are often encountered in practlce_but negative correlationis are not uncommon at
all. The negative correlations are often induced through inverse transformation.of
regressor variate x. It has been found that the correlation between (yield and alkali)
and (yield and days to matun'ty) is negative.

Consider a finite popu]atlon ( x, L Vi »i=1, 2 , N with population means
(X Y), population variances (Sx , Sy ) and covariance Sxy In formmg a product l\




128 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS
A — . : .
estimator Y, of Y from a simple random sample (x;,y;),i=1,2,...,nofsize
n, we obtain
A e
= yx/X o (1.1)

which is due to Robson [6] and rediscovered by Murthy [4]. where X and y are the
sample means. '

Consider the estimator

= (NX-nX)/(N-n) (12)

which is also an unbiased estimator for X. Using x* Srivenkataramana [13]
proposed a dual to product estimator to estimate Y as

..

Y =

NII-<|

X - (13)

Obviously, Y is a biased estimator for Y. To reduce/eliminate the bias of
Yr , we use Jackknife technique due to Quenouille [5] and obtain a general class
of estimators for Y and study the properties to the first order approximation.

2. Class of Estimators

In this section, we define a class of almost unbiased dual to product estimators
using jackknife technique and also an approach adopted by Rao [7]. Here, we take
n = pm and split the sample at random into p subsamples of m units each. Lety;
and _’_Ej (j=1,2,...,p) be unbiased estimators of Y and X based on subsamples
and y, X those based on entire sample of size n. Define the complementary
subsample means y; and X; (j=1,2,...,p)as follows :

= (ny -my;)/(n-m) = (ny - my;)/m’ '
2.1)

= (nX - m%;)/(n-m) = (1% - mi;)/m

which are subsample means based onm’ (n m) units obtained by onuttmg jth
(i=1,2,...,p) group from the entire sample of size n.

Consider

= (NX - nX/; )/(I;I‘—n)
: 2.2)

and X' = (NX-nx)/(N-n)
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Now, consider the ratio type estimators as

O

j=1

L~_<|

XX ad ¢ - X | @3

'cl»—a

I

24

based on entire sample of size n and subsample of size (n~m ) respectively. As
motivated by Rao 7], we propose a general class of almost unbaised dual to product
estimator for estimating Y as

To = o ¥ + {1-E(f)} ¥ - Y

Where a. is a random variable independent of-?,' and f (o) is a function of o.. Then
E(Tp)='Y

it Bla¥- BN -EG- ¥ el

For (2.5),a= x'/Xand f(o) = o is a solution in the sample mean. -

Introducing a constant ’q’ in the right hand side of (2.5), we can write (2.5)
as ' '

E'[a?:-ch(a))?:.l=E[i—.?;_—q?;'+q?:1 | 29)

Follewmg Sukhatme et al. [14] the biases of Y and Y to the terms of order
of approximation O(n™' )-can be given as

v &

B(Y) =Y N gt B . @)
Ty n(N-n+m) n :
B(Y;) YC§ N(N-7) (1= m)( +,K). | (2.8)

¢~ ~Where K= p & and Cy,C; are the coefficients of variation for the variates

Cx

y and x and p is the correlation coefficient between the two variates.

From (2.7) and (2.8), it can be shown that -
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B(Y) ('NQn)("n-’m)'_l m
.B(‘YL;-)_ n(N-n+m) . _g(N—m’)'_(l_a)’ (say)
s B(Y) = (1 6)B(Y)
'where‘.(‘l ) (N n)(NI_I_l,Inl) ahd g=WE—m3

- E(%{L,‘):—Y; (_1;.5) {E(%};)_%}
= B -8v+(1-8)EF)
=aE(.y)+(1-6’)E(?:.)
= L-sy+(1-0) ¥ 29

From (2.9) and (2.6), we have

'E[aY ~E({a)) Y]~ E[{q+(1-6q)x} ; {1+(1— dql¥:

(2.10)
- which shows' that a solution is now given as
et (1-3)% and o) = =
q fVx = (2.11)

forwhlchE(f(a)) 1+(1 6)q

Thus, using (2.11) in (2.4), a general class of almost unbiased dual to product
estimators can be obtained as

Tr

{q+--(1—6q)§—}%—('1—6)&;;

a, - a,
qY;+(1-3¢q) y-(1-9)qY; o (2.12),

" Thus, the following theorem can be stated hert;,
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Theorem 2.1 The class of estimators

TR o Y‘ +E {1 E( f(a)) } Y, would be-almost unbiased if

=q+(1—6q)x§ and f(a)=a forwhich

E(f(o) = 1+ (1-38)q

When N is very large or population is infinite, the class of almost unbiased -
dual to product estimators in (2.12) reduces to

* -A'. L] - . .A_.

TR=qu+(1-5Q)Y-(1—5)qu.

.1 o _p-1
where 8 =; and (1-9") = >

Remark The class of estimators Ty in (2.12) reduces to the following set of
. unbiased estimators for Y for suitable choices of q.

() Forq=0, Tg, = ¥, the usual sample mean.

.5
. 1 - Y, 1-5)a,
(i) Forq=g, Tg, = 3’ - (—6 )Y

(2.14)

-
bl

Cor TRZ=(N_—nN+m)E? (N'_,RL(B;I)?

(See Sukhmatme et al. [14]) _
(iii) When N is very large or population is infinite, the estimate Tiz turns out to be
Tg, = p¥i+ (1-p) % 215
which is Quenouille [5] type estimator
. (iv) For q= 1

1-9

A

= (1-28)(1-8)" 7+(1-8)" - (2.16)

Several other estimators can be cited for other suitable choices ofqin(2.12).
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3. Optimum Estimator in the Class
From (2.12), we hav;,
C Ty=q¥r(1-39)7-(1-8)q %
ad V(T = V() +(1-897 V(D +(1-8F V(¥
+29(1-39) Cov{¥: ,7) ~ 24 (1-8.9) (1- 8) Cov (7, %)
~2¢(1-8) Cov(Y:, YD) 6
Following Sukhatme et al. [14], to the terms of the order of apﬁroximatibn
O (™), it can be checked that

N—Il—z'z
N L@

V(y) =

v(E=v(E =co( ¥, $)= TR [Gr aCiler 2K)]

N-n (32)

&, - &, .
Cov(y, Y;) = Cov(¥, Y;) = Y [Ci+ gKCL ]

Putting the results (3.2) in (3.1) and simplifying it, we get
A-A-‘ ™ A‘
V (T) = 8¢ V(Y;) +(1-8q ' V () +25q (1~ 8q) Cov( Y}, ¥)

&, -
=V[3q Y; +(1-3q)y]

= Nn;qn Y [ C]+8q2Cx(dqg + 2K) ] 63
which is minimum for q= - 6_g = Qopt (say) (39

From (33) and (3.4), the optimum (minimum) V(TR) can be obtained as

Vo (T = "2 Ca- ) 6



DUAL TO PRODUCT ESTIMATORS =~ . - + E 133

which is equivalent to the approximate variance of usual biased linear regression
estimator ?,’r y+ b(X - X), where b is the sample regression coefficient of

yonx. From (3.4) and (2. 12) an optimum estimator in the class (2.12) is obtained
as . : :

S ey -1 Ee . ~1 £ .
Tro= (1+Kg™ )y - K(5g) Yi+(1-9) K@) Y - (3.6)
with variance given at (3.5),
Remark
6 N G X.. ’
In (3.6), X-is known but K= p T Y% B is rarely known where § is.the

population regression coefficient of y on x and f may be assessed with the

- help of a scatter diagram of y or x for the data from a pilot survey or a study
based on past data ora part of the data from the current study. Thus, the value
of K may be assessed to be used to obtain the feasible estlmators

(if) Itis to be pointed out that the estimator Ty in (2 12) would be more efficient
than the usual sample mean y and T, accordmg if

_either 0< q< g(—

d
3.7
or _% <q< 0
5 “d4<V .
- and either 8 <q < (2K-1) 8™ :
S CES)

or (2K—1)6"1< g< 8,

- (iii) The variance/mean squared error of any estimator belonging to the class Ty
(2.12) can be easily obtained from (3.3) to the terms of order O(n™).

4. Erﬁpii:ical Study

. “We now illustrate the results by empirical example considering the data on .
the number of peach trees is an orchard denoted by x and estimated production in
bushels of peach by y. Summarised data (see Cochran, W.G.[1], pp.172) is given
below.
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N=256,X=44.55,Y = 3647 82—3898
S5 =6409, Sxy = 4434 p=0.887
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Let the sample size be n = 30, and split the sample intop = 5 subsamples

cach of size m ='6.

Table (4.1) % RELATIVE EFFICIENCY OF Tg OVER Y

. [ V{Tr) N-n » . .
. , F= y°| % Relative efficiency
Value of q Estimator F nN overy
0 ¥ or Ty 2.0098 100.00
1 N 68.9957 29129
5 Tra
1 : 10.9677 183247
= Trs
1-% _ _
Qopt =-0.8113 Tro 04286 468.9221
q<-8.1133 W! >2.0098 <100
q>0 | Te . >2.0098 <100
(-8.1133<q<0) < 2.0098 > 100
— Th or To 68.9957 129129

In this table, the last column gives the percentage relatlve efficiency of the
estimators belonging to class Tr (2.12) over sample mean y for different choices
of q. The efficiency of the estimator Tgo for the choice of q =—0.8113 is maximum
among those considered here, which shows that Tge is the most efficient estimator
in the class Tg (2.12). 'In'practice, one can substitute the estimated values of the

_variances and covariances in order to obtain a "near optimum" value of q. In the
above table for the choice of q in an optimum interval (-8.1133 < q < 0 ), the
corresponding estimator in the class Tg (2.12) will be always more efﬁcncnt than
those considered in this case. The table also shows that the estlmators Tra, Y and

Y are equally efficient in this case.
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